Respon Frekuensi Filter Rata-Rata Menjalankan Respon frekuensi sistem LTI adalah DTFT respons impuls, Respons impuls dari rata-rata pergerakan L-sample adalah Karena filter rata-rata bergerak adalah FIR, respons frekuensi akan berkurang menjadi jumlah yang terbatas. Bisa menggunakan identitas yang sangat berguna untuk menuliskan respons frekuensi seperti di mana kita membiarkan ae minus jomega. N 0, dan M L minus 1. Kita mungkin tertarik pada besarnya fungsi ini untuk menentukan frekuensi yang melewati filter yang tidak diimbangi dan yang dilemahkan. Berikut adalah sebidang besar fungsi ini untuk L 4 (merah), 8 (hijau), dan 16 (biru). Sumbu horizontal berkisar dari nol sampai radian pi per sampel. Perhatikan bahwa dalam ketiga kasus tersebut, respons frekuensi memiliki karakteristik lowpass. Komponen konstan (nol frekuensi) pada input melewati filter yang tidak diimbangi. Beberapa frekuensi yang lebih tinggi, seperti pi 2, benar-benar dihilangkan oleh filter. Namun, jika maksudnya adalah mendesain filter lowpass, maka kita belum melakukannya dengan baik. Beberapa frekuensi yang lebih tinggi dilemahkan hanya dengan faktor sekitar 110 (untuk rata-rata pergerakan 16 titik) atau 13 (untuk rata-rata pergerakan empat titik). Kita bisa melakukan jauh lebih baik dari itu. Plot di atas dibuat dengan kode Matlab berikut: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) plot (abs omega, abs (H4) abs (H8) H16)) sumbu (0, pi, 0, 1) Cipta copy 2000- - University of California, BerkeleyI perlu merancang filter rata-rata bergerak yang memiliki frekuensi cut-off 7,8 Hz. Saya telah menggunakan filter rata-rata bergerak sebelumnya, namun sejauh yang saya ketahui, satu-satunya parameter yang dapat diberikan adalah jumlah titik yang akan dirata-ratakan. Bagaimana ini berhubungan dengan frekuensi cut-off Kebalikan dari 7,8 Hz adalah 130 ms, dan Im bekerja dengan data yang diambil sampelnya pada 1000 Hz. Apakah ini menyiratkan bahwa saya harus menggunakan ukuran jendela filter rata-rata bergerak dari 130 sampel, atau adakah hal lain yang saya lewatkan di sini pada 18 Juli 13 di 9:52 Filter rata-rata bergerak adalah filter yang digunakan dalam domain waktu untuk menghapus Kebisingan yang ditambahkan dan juga untuk tujuan pemulusan namun jika Anda menggunakan filter rata-rata bergerak yang sama di domain frekuensi untuk pemisahan frekuensi maka kinerjanya akan menjadi yang terburuk. Jadi dalam hal ini menggunakan filter domain frekuensi ndash user19373 3 Feb 16 at 5:53 Filter rata-rata bergerak (kadang-kadang dikenal bahasa sehari-hari sebagai filter boxcar) memiliki respon impuls persegi panjang: Atau, dengan kata lain berbeda: Mengingat respons frekuensi sistem diskrit-waktu Sama dengan transformasi Fourier diskrit waktu respons impulsnya, kita dapat menghitungnya sebagai berikut: Yang paling diminati untuk kasus Anda adalah respons besarnya filter, H (omega). Dengan menggunakan beberapa manipulasi sederhana, kita bisa mendapatkannya dalam bentuk yang mudah dipahami: Ini mungkin tidak akan mudah dimengerti. Namun, karena identitas Eulers. Ingatlah bahwa: Oleh karena itu, kita dapat menulis di atas sebagai: Seperti yang saya nyatakan sebelumnya, apa yang benar-benar Anda khawatirkan adalah besarnya respons frekuensi. Jadi, kita dapat mengambil besarnya hal di atas untuk menyederhanakannya lebih jauh: Catatan: Kita bisa menjatuhkan istilah eksponensial karena mereka tidak mempengaruhi besarnya hasil e1 untuk semua nilai omega. Karena xy xy untuk dua bilangan kompleks hingga x dan y, kita dapat menyimpulkan bahwa kehadiran istilah eksponensial tidak mempengaruhi respons magnitudo keseluruhan (sebaliknya, ini mempengaruhi respon fase sistem). Fungsi yang dihasilkan di dalam kurung besarnya adalah bentuk kernel Dirichlet. Terkadang disebut fungsi sinc periodik, karena menyerupai fungsi sinc agak dalam penampilan, namun bersifat periodik. Bagaimanapun, karena definisi frekuensi cutoff agak underspecified (-3 dB point -6 dB point first sidelobe null), Anda dapat menggunakan persamaan di atas untuk menyelesaikan apa pun yang Anda butuhkan. Secara khusus, Anda dapat melakukan hal berikut: Set H (omega) ke nilai yang sesuai dengan respons filter yang Anda inginkan pada frekuensi cutoff. Atur omega sama dengan frekuensi cutoff. Untuk memetakan frekuensi waktu kontinyu ke domain diskrit-waktu, ingatlah bahwa omega 2pi frac, di mana fs adalah sample rate Anda. Temukan nilai N yang memberi Anda kesepakatan terbaik antara sisi kiri dan kanan dari persamaan. Itu seharusnya panjang rata-rata bergerak Anda. Jika N adalah panjang rata-rata bergerak, maka frekuensi cut-off perkiraan F (berlaku untuk N gt 2) pada frekuensi normal Fffs adalah: Kebalikannya adalah Rumus ini sama sekali asimtotik untuk N besar, dan memiliki sekitar 2 kesalahan. Untuk N2, dan kurang dari 0,5 untuk N4. P. S. Setelah dua tahun, akhirnya inilah pendekatan yang diikuti. Hasilnya didasarkan pada perkiraan spektrum amplitudo MA di sekitar f0 sebagai parabola (rangkaian orde 2) menurut omega 2 Omega2 (Omega) Omega2 (frac - frac) yang bisa dilakukan lebih tepat di dekat persimpangan nol MA (Omega) - Frac dengan mengalikan Omega dengan koefisien yang mendapatkan MA (Omega) kira-kira 10.907523 (frac - frac) Omega2 Larutan MA (Omega) - frac 0 memberikan hasil di atas, di mana 2pi F Omega. Semua hal di atas berkaitan dengan frekuensi cut -3dB, subjek dari posting ini. Terkadang meskipun menarik untuk mendapatkan profil atenuasi pada stop-band yang sebanding dengan urutan ke 1 IIR Low Pass Filter (single pole LPF) dengan frekuensi cut-3dB yang diberikan (seperti LPF disebut juga integrator bocor, Memiliki tiang tidak persis di DC tapi dekat dengan itu). Sebenarnya kedua MA dan orde 1 LPF IIR memiliki kemiringan -20dBdecade di band berhenti (satu membutuhkan N yang lebih besar daripada yang digunakan pada gambar, N32, untuk melihat ini), namun sedangkan MA memiliki nulls spektral pada FkN dan sebuah Pada evelope, filter IIR hanya memiliki profil 1f. Jika seseorang ingin mendapatkan filter MA dengan kemampuan penyaringan yang sama seperti filter IIR ini, dan cocok dengan frekuensi cut off 3dB agar tetap sama, setelah membandingkan dua spektrum, dia akan menyadari bahwa riak pita stop dari filter MA berakhir 3dB di bawah filter IIR. Untuk mendapatkan riasan stop-band yang sama (yaitu redaman daya noise yang sama) sebagai filter IIR, rumus dapat dimodifikasi sebagai berikut: Saya menemukan kembali skrip Mathematica dimana saya menghitung cut off untuk beberapa filter, termasuk satu MA. Hasilnya didasarkan pada perkiraan spektrum MA sekitar f0 sebagai parabola menurut MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) kira-kira N16F2 (N-N3) pi2. Dan menurunkan persimpangan dengan 1sqrt dari sana. Ndash Massimo 17 Jan at 2: 08Exponential Filter Halaman ini menjelaskan penyaringan eksponensial, filter paling sederhana dan paling populer. Ini adalah bagian dari bagian Penyaringan yang merupakan bagian dari A Guide to Fault Detection and Diagnosis .. Ikhtisar, konstanta waktu, dan analog yang setara Filter yang paling sederhana adalah filter eksponensial. Ini hanya memiliki satu parameter tuning (selain interval sampel). Hal ini membutuhkan penyimpanan hanya satu variabel - output sebelumnya. Ini adalah filter IIR (autoregresif) - efek dari peluruhan perubahan masukan secara eksponensial sampai batas tampilan atau aritmatika komputer menyembunyikannya. Dalam berbagai disiplin ilmu, penggunaan filter ini juga disebut sebagai smoothing8221 yang berespon. Dalam beberapa disiplin ilmu seperti analisis investasi, filter eksponensial disebut sebagai 8220Exponentially Weighted Moving Average8221 (EWMA), atau hanya 8220Exponential Moving Average8221 (EMA). Ini menyalahgunakan rata-rata ARMA 8220moving average8221 terminologi time series, karena tidak ada sejarah masukan yang digunakan - hanya masukan saat ini. Ini adalah waktu diskrit yang setara dengan urutan pertama urutan kedua yang sering digunakan dalam pemodelan analog sistem kontrol kontinyu. Di sirkuit listrik, filter RC (filter dengan satu resistor dan satu kapasitor) adalah jeda orde pertama. Saat menekankan analogi pada sirkuit analog, parameter tuning tunggal adalah konstanta waktu 82208, biasanya ditulis sebagai huruf kecil huruf Yunani Tau (). Sebenarnya, nilai pada waktu sampel diskrit sama persis dengan jeda waktu kontinyu yang setara dengan konstanta waktu yang sama. Hubungan antara implementasi digital dan konstanta waktu ditunjukkan pada persamaan di bawah ini. Persamaan dan inisialisasi filter eksponensial Filter eksponensial adalah kombinasi tertimbang dari perkiraan sebelumnya (output) dengan data masukan terbaru, dengan jumlah bobot sama dengan 1 sehingga output sesuai dengan input pada kondisi tunak. Setelah notasi filter sudah diperkenalkan: y (k) ay (k-1) (1-a) x (k) di mana x (k) adalah input mentah pada langkah waktu ky (k) adalah output yang disaring pada waktu step ka Adalah konstanta antara 0 dan 1, biasanya antara 0,8 dan 0,99. (A-1) atau kadang-kadang disebut konstanta 8220moothing8221. Untuk sistem dengan selang waktu tetap T antara sampel, konstanta 8220a8221 dihitung dan disimpan untuk kenyamanan hanya bila pengembang aplikasi menentukan nilai baru dari konstanta waktu yang diinginkan. Untuk sistem dengan sampling data pada interval tidak beraturan, fungsi eksponensial di atas harus digunakan setiap langkah waktu, di mana T adalah waktu sejak sampel sebelumnya. Output filter biasanya diinisialisasi agar sesuai dengan input pertama. Sebagai pendekatan konstan waktu 0, a pergi ke nol, jadi tidak ada penyaringan 8211 output sama dengan input baru. Seiring konstanta waktu menjadi sangat besar, sebuah pendekatan 1, sehingga input baru hampir mengabaikan 8211 penyaringan yang sangat berat. Persamaan saringan di atas dapat disusun ulang menjadi ekuivalen prediktor-korektor berikut: Bentuk ini membuatnya lebih jelas bahwa perkiraan variabel (keluaran filter) diprediksi tidak berubah dari perkiraan sebelumnya y (k-1) ditambah dengan istilah koreksi Pada tak terduga 8220innovation8221 - perbedaan antara input baru x (k) dan prediksi y (k-1). Bentuk ini juga merupakan hasil dari derover filter eksponensial sebagai kasus khusus sederhana dari filter Kalman. Yang merupakan solusi optimal untuk masalah estimasi dengan seperangkat asumsi tertentu. Langkah respons Salah satu cara untuk memvisualisasikan pengoperasian filter eksponensial adalah dengan merencanakan responsnya dari waktu ke waktu ke langkah masukan. Artinya, dimulai dengan input dan output filter pada 0, nilai input tiba-tiba berubah menjadi 1. Nilai yang dihasilkan diplotkan di bawah ini: Pada plot di atas, waktu dibagi dengan waktu filter konstan tau sehingga anda bisa lebih mudah memprediksi. Hasil untuk jangka waktu tertentu, untuk nilai konstanta waktu filter. Setelah waktu sama dengan konstanta waktu, output filter naik menjadi 63,21 dari nilai akhirnya. Setelah waktu sama dengan 2 konstanta waktu, nilainya meningkat menjadi 86,47 dari nilai akhirnya. Output setelah kali sama dengan 3,4, dan 5 konstanta waktu masing-masing adalah 95,02, 98,17, dan 99,33 dari nilai akhir. Karena filternya linier, ini berarti bahwa persentase ini dapat digunakan untuk besarnya perubahan langkah, tidak hanya untuk nilai 1 yang digunakan di sini. Meskipun respons langkah dalam teori membutuhkan waktu yang tidak terbatas, dari sudut pandang praktis, pikirkan filter eksponensial sebagai 98 sampai 99 8220done8221 yang merespons setelah waktu yang sama dengan 4 sampai 5 konstanta waktu filter. Variasi pada filter eksponensial Ada variasi filter eksponensial yang disebut filter eksponensial 8220nonlinear8221 Weber, 1980. dimaksudkan untuk menyaring suara dengan sangat dalam amplitudo 8220typical8221 tertentu, namun kemudian merespons lebih cepat perubahan yang lebih besar. Hak Cipta 2010 - 2013, Greg Stanley Bagikan halaman ini:
No comments:
Post a Comment